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Abstract

In this study, we derive first-order analytical solutions to the pressure head moments (mean
and variance) for one-dimensional steady state unsaturated flow in randomly heterogeneous
layered soil columns under various random boundary conditions. We assume that the con-
stitutive relation between the unsaturated hydraulic conductivity and the pressure head
follows an exponential model, and treat the saturated hydraulic conductivity K as a ran-
dom function and the pore size distribution parameter « as a random constant. The solution
to the pressure head variance is an explicit function of the input variabilities. In addition,
we also give solutions for the mean and variance of the unsaturated hydraulic conductivity.
The first-order analytical solutions are compared with those from Monte Carlo simulations.
These comparisons show that the analytical solutions are valid for relatively large variabil-
ities of soil properties. We also investigate the effect of uncertain boundary conditions and
the relative contribution of input variabilities to the head variance.

INDEX TERMS: 1805 Hydrology: Computational hydrology; 1849 Hydrology: Numer-
ical approximation and analysis; 1869 Hydrology: Stochastic hydrology; 1873 Hydrology:
Uncertainty assessment; 1875 Hydrology: Vadose zone; KEYWORDS: stochastic processes,

unsaturated flow, heterogeneity, uncertainty quantification, analytical solutions



1 Introduction

Various analytical solutions for one-dimensional infiltration problems have been presented in
the literature [ Warrick, 1974; Srivastava and Yeh, 1991; Tracy, 1995; Basha, 1999; among
others ]. In these solutions, it is assumed that soil properties either are homogeneous or vary
deterministically in space. Quantification of uncertainties associated with unsaturated flow
in randomly heterogeneous media is challenging. Most relevant studies are numerical, either
by Monte Carlo simulations or with numerical moment equation methods [van Genuchten,
1982; Andersson and Shapiro, 1983; Yeh et al., 1985; Hopmans et al., 1988; Unlu et al., 1990;
Romano et al., 1998; Zhang and Winter, 1998; Ferrante and Yeh, 1999; Foussereau et al.,
2000; Lu et al., 2002; Lu and Zhang, 2002 |. Only a limited number of analytical solutions
to the stochastic unsaturated flow problem are available in the literature. These solutions in
general are restricted to single-layered, statistically homogeneous porous media. Yeh et al.
[1985] used spectral representations of heterogeneous soil properties to derive solutions of
pressure head statistics for unsaturated flow in the gravity-dominated regime. Zhang et al.
[1998] gave analytical solutions to the pressure head variance for gravity-dominated flow with
both Gardner-Russo and Brooks-Corey constitutive models. Indelman et al. [1993] derived
expressions for pressure head moments for one-dimensional steady state unsaturated flow in
bounded single-layered heterogeneous formations under deterministic boundary conditions
(a constant head at the bottom and constant flux at the top). These expressions contain
integrals that have to be evaluated numerically in general.

Because of nonlinearity of unsaturated flow, the Kirchhoff transformation is often em-

ployed to linearize the equation of unsaturated flow. Tartakovsky et al. [1999], using the



Kirchhoff transformation, solved the mean pressure head and the head variance for the one-
dimensional unsaturated flow problem up to second order in terms of variability of the log
saturated hydraulic conductivity. Although their equations are given in a more general form,
the analytical solution for the one-dimensional problem is restricted to a special case of a
single-layered soil column with a deterministic pore size distribution parameter under de-
terministic boundary conditions. Tartakovsky et al. [2004] gave an analytical solution to
the moments of the Kirchhoff-transformed variable for transient unsaturated flow in statisti-
cally homogeneous porous media with an assumption of a deterministic pore-size distribution
parameter. Recently, using the Kirchhoff transformation, Lu and Zhang [2004] derived an-
alytical solutions to the first two moments (mean and variance) of the pressure head for
one-dimensional steady-state unsaturated flow in layered, randomly heterogeneous soils.

In this paper, we first present analytical solutions for the statistics (mean and variance)
of the pressure head and the unsaturated hydraulic conductivity for one-dimensional steady
state unsaturated flow in a single-layered heterogeneous soil column with random boundary
conditions under the assumptions that the constitutive relationship between the pressure
head and the unsaturated hydraulic conductivity follows the Gardner model and that the
pore size distribution parameter « is a random constant in the layer. The solutions are valid
for the entire unsaturated soil column. Specification of random boundary conditions allows
us to easily extend the solutions to problems with multiple layers, where the statistics of
soil properties in each of these layers may be different. Our solutions are verified using high
resolution Monte Carlo simulations. One advantage of the solutions given in this study over

those solutions based on the Kirchhoff transformation [Lu and Zhang, 2004; Tartakovsky



et al., 2004] is that the pressure head variance is given explicitly as a function of input
variabilities rather than a function of (cross-) covariances of the intermediate Kirchhoff-

transformed variables. Such explicit expressions provide more physically meaningful insights.
2 Mathematical Formulation

We start from the equation for steady state flow in a one-dimensional unsaturated single-

layered heterogeneous soil column a < z < b,

dilz [K(z,1/1) (% + 1)} =0, (1)

with a constant pressure head at the lower boundary z = a,

and a constant flux boundary at the upper boundary z = b,
dip
K — +1
o (3 +1)

where 1 is the pressure head, W, is the specified pressure head at the bottom of the layer,

=0 (3)

K (z,1) is the unsaturated hydraulic conductivity that depends on the pressure head, ¢ is the
flux specified at the top of the layer, and z is the vertical coordinate pointing upwards. Using
this coordinate system, the flux ¢ is negative for infiltration and positive for evaporation.
Here we assume that both ¥, and q are specified with some uncertainties, i.e., ¥, = (¥,)+¥’
and ¢ = (q) + ¢/, where (¥,) and (g) are their respective means, and ¥/, and ¢’ are their

fluctuations. Integrating (1) and using boundary condition (3) yields

K(2,) (‘;ﬂ 4 1) -, (4)
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To solve the above equation, it is required to specify a constitutive relationship between
the pressure head and the unsaturated hydraulic conductivity. Although the von Genuchten
constitutive model is more accurate and widely used in deterministic simulations, for math-
ematical convenience we adopt Gardner’s exponential model [Gardner, 1985]: K(z,¢) =
K(z) explatp(z))], where K,(z) is the saturated hydraulic conductivity and « is the pore
size distribution parameter. We further assume that K, is a statistically homogeneous ran-
dom field, and « is a random constant. The assumption of a random constant « is justified
if the ratio of the correlation length of o to the thickness of the layer is relatively large
[Tartakouvsky et al., 2003; Lu and Zhang, 2004]. In the limit that this ratio goes to infinity,
the random constant treatment becomes exact.

We formally decompose each random function as a summation of a mean and a fluctuating
part: f(z) = In[K,(2)] = (f)+ f'(2) and § = In[e] = (B) +'. The log unsaturated hydraulic

conductivity then can be written as

Y(2) =In[K(2)] = (/) + ['(2) + ev(z) = YO (2) + YO (2) + -, (5)
where
YO(2) = (f) + g0 (2), (6)
and
YO (2) = f'(2) + W (2) + @ (2)8' (7)

where o, = exp((3)) is the geometric mean of o.. Because the variability of the pressure head
¢ depends on input variabilities, i.e., those of the soil properties (K, and «) and those of

the boundary conditions (¥, and ¢), one may express ¢ as an infinite series in the following



form: ¢(z) = @ +4p() 442 4. where the order of each term in the series is with respect
to o, which is a combination of standard derivations of the input variables. By substituting
(6)-(7) and the decompositions of ¥, and ¢ into (4) and (2), and separating terms at different

orders up to first order, we have the zeroth-order equation

Knle) (22 41) =~ ®)

subject to a boundary condition
0 (a) = (T,), (9)

where K,,(z) = K, exp|a,1(?(z)] is the zeroth-order unsaturated hydraulic conductivity, and
K, is the geometric mean of the saturated hydraulic conductivity. The first-order equation
is

(2 ©)(4
Kin(2,9) dwTZ() + Y(l)(z) (dwTZ() + 1):| = ¢, (10)

subject to a boundary condition

vW(a) = . (11)
2.1 Zeroth-order Mean Pressure Head
By noticing that K,,(2) = K, exp[a 0/ (2)], (8) can be written as

dK,,(2)
dz

+ 0, K (2) = —ay(q), (12)

subject to a boundary condition K,,(a) = K,exp[ay,(¥,)]. This equation can be solved

directly and the solution is

Kon(2) = KyetsletWa)=2) _ (g (1- eag(“_z)) . (13)



The zeroth-order pressure head ¥(*) can be simply derived from (13):

1 o _ 9 .
o %, )

Similar to Yeh [1989], the solution of the mean head for a multiple layered soil column is
straightforward. The zeroth-order mean pressure head is solved sequentially from the bottom
layer to the top layer. The mean head value computed at the top of a layer is taken as a

constant head boundary at the bottom of the overlying layer.
2.2 Variance of Pressure Head

Substituting (8) into (10) yields

dyM(z) ¢

P YW(z) = —¢. (15)

m\Z

Since YV (2) = f'(2) + a0 (2) + v (2)8", (15) becomes

dy®(z) _ ay{g) $0(2)

=+ S (2) + gy (2) B
dz K (2) B )

Kn(2)

(16)

The solution of the above first-order ordinary differential equation with boundary condition
(11) is

e (a—2)

PO

e+ [0+ @) + gl @] etz )

which can be used to formulate the pressure head variance and cross-covariance between the

pressure head and other variables.

2.2.1 Single-layer Soil Column

For an unsaturated soil system with a single layer, we may assume that the boundary con-

ditions ¢ and ¥, are independent of medium properties f and «. The latter assumption,
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the independence of ¥, on soil properties of the layer, will be justified later. If we further
assume that f and « are uncorrelated and « is a random constant, then up to second order,
the pressure head covariance Cy(y, z) can be derived from (17) as

Cyly,2) = W (ye"(2)

20—y—2z)

eag( Y

_ 2 20 (Wg) 2
= [K plc oy,

+ / / 07 +(0)*C(y, 2) + 2 {0)*¥ ) () (2) 03] e+~ dydz | (18)

where the first term is the contribution of the uncertain boundary condition at the lower
boundary to the head covariance at elevations z and y.

Because of symmetry of Cy(y, z) with respect to its arguments y and z, we only need to
find the solution for y > z. Integration of the first term in (18) under the double integral
is trivial. For an exponential covariance function Cy(y, z) = o7 exp(—|y — 2|/A), where X
is the correlation length of f, the integration of the second and third terms can be done

analytically and (18) becomes

eag(Qa—y—z) 2 20g(¥q) 2 02 —ag(a—y) —ag(a—2z)
o ) e A
m m q
2,212
4 {a0y°op\” [(1 _ elag3)Ea) _ glag—3)—a) 4 e(ag+§)<zfa)+(agfi)(y—w)
az? —1
62ag(zfa) -1 5 9
where
F(2) = 0 (2)eoslrv®@@-d y (cantwa) ¢ SN oy g yenotwe
z) =P (2)e +\e + 30 ) (F—a) = (Ya)e : (20)
g

Equation (19) leads to the expression for the pressure head variance

2
2 _ 2 _204[ha—1 (2)—2 Gq ag(a—z 2
0'1/;(2) = O0Oy,€ gl (2) ]+m [6 o )—1]
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" K2 -1

) [1 — 2eortDe=s) 4 grogta—s) _ 1—_”]

Qg

2
+ 03 [90e) 4 Wendes 1 - ) -y = et o)
9

where h, = a + (¥,) is the total head at the lower boundary z = a. The first term in the
right side of (21) is the contribution of uncertainty due to the variability of the constant
head specified at the lower boundary to the head variance at elevation z. As z increases, this
contribution decreases, as expected. The second term in the right-hand side represents the
effect of uncertainty on the specified flux at the upper boundary. This term has a minimum at
the low boundary, increases with elevation z, and reaches its maximum at the top boundary.
The last term in (21) is the contribution of variability of « to the head variance. The third
group of terms, i.e., the second line of (21), is the contribution of the variability of the
saturated hydraulic conductivity to the head variance. In case of oy = 1/, the denominator

of this term is zero and this term can be re-derived by taking its limit as oy — 1/A:

O'i,f = % {1 + [2(19(& — Z) — 1]62ag(a—Z)} ) (22)

Sometimes, we may be interested only in the behavior of predictive uncertainty of the
pressure head within the upper portion (gravity-dominated) of the unsaturated zone. For

large z, (21) can be approximated as

o? o2
02 = Ao+ L 4 2O, (23)

ag(g)*  ag(l+ayd)

where ¥ is the zeroth-order mean pressure head in the gravity-dominated region of the
layer. Note that the second term in (23), the contribution of f variability to the head variabil-
ity, is identical to that of Yeh [1985], which was derived for gravity-dominated unsaturated

flow under deterministic boundary conditions.

10



It should be noted that equation (21) may be used to compute the head variance for the
one-dimensional saturated flow problem with a random constant head at one end (z = a)

and a random constant flux at the other end, simply by setting iy = 0 and 03 = 0 in (21):

o? 2(q)%02 )\
oy(z) = oy, + ?qz(z —a)?+ “2(72}0 [(z—a)+ A (e(“*z)/’\ —-1)]. (24)
g g

Here 07 (2) is the saturated head variance and oj,_ is the uncertainty of the constant head

boundary.

2.2.2 Multi-layer Soil Column

For a one-dimensional soil column with n layers defined by z; < 2o < -+ < 2,11 and given
boundary conditions of an infiltration rate ¢ at the top z = z,,1 and a constant pressure
head ¥, at the bottom z = z;, again, solutions can be derived upward sequentially from
the bottom to the top layer. An important observation is that, for one-dimensional flow
problems with the given boundary conditions, the head moments in any individual layer
are independent of the soil properties of all overlying layers. Because the flux at the top of
the bottom layer is the same as that in the top of the soil column, it is obvious that the
head moments for the bottom layer can be solved alone without considering soil properties
of all overlying layers. As a result, the head variability at the top of the bottom layer
is uncorrelated with soil properties of the second layer, i.e., (8'U,) = (5'9'(22)) = 0 and
(f'(2)T%) = (f'(2)Y'(29)) = 0 for zo < z < 23, where W), is the variability of the pressure
head at the bottom of the second layer, simply because 1’(z3) is determined from the bottom
layer. This argument is valid for the rest of overlying layers. However, since the flux at the
top of interface of a layer is the same as that specified at the top of the soil column, for any
layer k > 2, (¢''(2)) # 0 for zx_1 < z < 2, i.e., (¢'V}) = (¢YI(2)) # 0.
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Based on the above reasoning, the pressure head covariance in any overlying layer k£ of

the multiple-layer soil column can be written as

ag(22p—y—2)
e ag (¥
Cyly,2) = Ko Enl®) [Kge*e Moy,

— KjetstVe [/ (q'W} ) e =2k dz+/ (q'Wt )es =~ Z’c)d]
+ [ [ @ren ) + a O we e ]e%@w”dydz} (25)

where 2z, < z < y < 2ky1, and ¥y is the constant head boundary at the bottom of the
k' layer and is determined from the underlying (k — 1) layer. Comparing to (18), the
only difference is that the cross-covariance (¢'¥}) may not be zero and should be evaluated
for each sequential layer. This cross-covariance can be approximated up to first order by

multiplying ¢’ to (17), taking the mean, and carrying out the integral

e% (a—2)

(@M (2)) = Kol

o2
(%51 i) 4 pe )] 20)
Qg

Applying this equation at the top boundary of the (k — 1) layer z = 2, yields

eag (zk—lfzk)

2
g9 g (2p—21 g (9 (25
(q’%) = (q’dj(l)(zk)) — % (zk) [_‘1 (1 —e g (2K —2k 1)) + ng g (%0 (24, 1))<q’\p;€1>} .

Qq

(27)

Substituting (27) into (25) and setting y = z leads to the pressure head variance in the k™

layer:
2
o2 (z) = o2 (zk)62°‘9(hk*h) + L [eag(zkfz) _ 1]2
y v a2KZ (2)
2K ()0 W) [ ag(en—2) _
m ag(zk—2) _ 1 ag(zp—2)
R e Je
2212 204 (2p—2

i ()07 [1 _ 9elagt ) -2) | graglanz) _ 1€ o )}

KZ(2)(a2)2 — 1) )

2
+ o} [w(o) (2) + %eo‘g(zkh) (z —2z) — (hg — z)eag(hkh)] : (28)
9
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where 2, < 2z < 241. In (28), by and 07 (2;) are respectively the total head and the head
variance specified at the bottom of the k* layer, both of which are determined from the
(k — 1) layer for k > 2. The parameters K,, a,, 0f, A, and o in (28) refer to soil
properties of the k** layer. The index k in these parameters have been omitted for simplicity
in mathematical representation. If oy = 1/ for some layers, the term on the third line of

(28) for these layers should be replaced by the expression in (22).
3 Variance of Log Hydraulic Conductivity
Writing K(2) = K©(z) + KM (2) + --- and recalling K(z) = K,exp(ath) and (z) =
YO (2) + M (2) + - - -, we have
KOG + KOG 4= K 1+ f +---)ex? @ [1+ a0V (2) + @ ()8 + -] . (29)
g g g -
Separating (29) at different orders leads to
KO(2) = Kn(2) = K, ®), (30)
and the first-order approximation
KW (z) = Kn(2)Y(2) = Kn(2) [f' + gV (2) + 0y (2)8]. (31)
The latter allows us to formulate the variance of the unsaturated hydraulic conductivity
o (2) = Kn(2)oy(2)
= K;.(2) {0}(2) + 204Cpy(2) + o [0 (2) + 201 (2) Cpy (2) + o3[ (2)]"] } (32)

where the cross-covariance Cp,(z) and Cgy(z) can be derived by respectively multiplying

f'(z) and 8’ to (17), taking ensemble means, and carrying out integration:

(g)Ao?

Cry(2) = (o + DK (?) [ _ e(ag+1//\)(a—z)} ’ (33)
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and

Cpol2) = 0 [#0(2) + L mlev 1z — ) — (h, — e~ (34
)

4 Illustrative Examples

In this section, we demonstrate the accuracy of our first-order analytical solutions of the
mean pressure head and the head variance for one-dimensional steady state unsaturated
flow in a hypothetical layered soil column, by comparing our results with those from Monte

Carlo simulations.
4.1 Base Case

In our base case, denoted by Case 1, we consider a one-dimensional heterogeneous soil column
with three layers. The length of the soil column is 20 m and the thickness of these layers
(from the bottom to the top layer) is 5m, 5m, and 10m, respectively. The column is uniformly
discretized into 400 line segments (one-dimensional elements) of 0.05m in length. The origin
of the vertical coordinate is set at the bottom of the column. The mean total head is
prescribed at the bottom as (H,) = 0.0 m (i.e., (¥,) = 0.0, water table) and 0%, =o0j =0,
and the mean infiltration rate at the top boundary is given as (¢) = —0.002 m/day with
a standard deviation of o, = 0.0004 m/day, i.e., coefficient of variation C'V, = 20%. Here
we choose a relatively small variability of the infiltration rate to ensure that the Monte
Carlo simulations, which are conducted to validate the first-order analytical solutions, will
converge. The means of the log saturated hydraulic conductivity for three layers are given
as (f) = 0.0, 1.0, and 0.0, respectively, with CVg, = 100% (0% = 0.693) for all layers. The

correlation length of the log hydraulic conductivity is A = 1.0 m for all layers. The statistics
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of the logarithm of the pore size distribution parameter are given as () = 0.693, 1.099, and
0.405, respectively, which gives the geometric mean of oy = 2.0, 3.0, and 1.5. The variability
of « is given as CV, = 10% for all layers.

To evaluate the accuracy of the first-order analytical solutions, we conduct Monte Carlo
simulations for comparison purposes. For three layers, we generate three sets of realiza-
tions, each of which includes 10,000 one-dimensional unconditional realizations. Each set of
these realizations has been tested separately by comparing their sample statistics (the mean,
variance, and correlation length) with the specified mean and covariance functions. The com-
parisons show that the generated random fields reproduce the specified mean and covariance
structure well. Realizations of the log hydraulic conductivity fields for the whole column are
then composed using three realizations taken from each set of realizations. The log pore-size
distribution parameters for the three layers are generated from a random number generator.
In the case of uncertain boundary conditions (a random infiltration rate and/or a random
constant head at the lower boundary), boundary values are also generated using the random
number generator.

The steady state unsaturated flow equation, i.e. equation (1) subject to boundary con-
ditions (2)-(3), is solved using Yeh’s algorithm [Yeh , 1989], for each realization of the log
hydraulic conductivity field and the pore size distribution parameter for the three layers.
In the case that the uncertainties in the infiltration rate and/or constant head boundary
condition (at the bottom) are involved, randomly generated values of the infiltration rate
and constant head will be used. If a solution for pressure head contains any positive values,

the realization corresponding to this solution is simply removed. The sample statistics for
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the flow field, i.e., the mean prediction of head and its associated uncertainty (variance)
are then computed from the rest of realizations. These statistics are considered the “true”
solutions that are used to compare against the derived analytical solutions of the moment
equations.

Figure 1a compares the mean pressure head derived from Monte Carlo simulations (solid
curve) and zeroth-order analytical solutions (dashed curve). It is seen from the figure that
the zeroth-order analytical solution is very close to that derived from the Monte Carlo
simulations. Comparison of the standard deviation of pressure head computed from Monte
Carlo simulations and analytical solutions is illustrated in Figure 1b, which again shows that
both are similar.

There are several possible sources of errors that could contribute to the discrepancy
between the Monte Carlo results and the analytical solutions. First, there are two types
of errors associated with Monte Carlo simulation results: numerical and statistical. The
former depends on the numerical method and the particular solver used as well as the spatial
discretization. The larger the spatial variability, the finer the required spatial discretization.
The statistical errors involved in Monte Carlo simulations stem from approximating the
stochastic process of interest with a finite number of realizations. To reduce this type of
error, one may need to conduct a large number of simulations. The actual number of required
simulations depends on the spatial variability of the process. In our examples, the numerical
grid used in Monte Carlo simulations is sufficiently fine (20 elements for each correlation
length) to reduce the effect of numerical discretizations, and a considerably large number

of realizations (10,000) are used to reduce the statistical errors. On the other hand, the
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analytical solutions are derived under the assumption of small perturbations, which may
introduce error. In particular, the mean head is approximated to zeroth order and the head
variance is second order in term of ¢, which is a combination of input variabilities. It should
be noted that head variance oj[z] = {[¥™(2)]?) from analytical solutions represents the
lowest-order approximation of the head variance. Here we shall mention that, although the
variabilities of f and (3 in each layer are not large, the total variability of either f or 5 for the
whole column is still relatively large because of the contrast between layers [Lu and Zhang,
2002].

Figure 2 illustrates the mean and variance of the unsaturated hydraulic conductivity
computed from analytical solutions and Monte Carlo simulations for the base case. It is seen

that the first-order analytical solutions are in good agreement with Monte Carlo simulations.
4.2 Large Variabilities on Soil Properties

Next we are interested in validation of our solutions at relative large variabilities of f, 3,
and ¢q. The problem configuration is similar to the base case, except for the parameter
variabilities. We first examine the validation of analytical solutions with uncertainty in
each individual parameter while treating other parameters deterministically. Monte Carlo
simulations are conducted for each individual case. Figure 3 depicts the comparisons of
Monte Carlo results and analytical solutions at a? = 2.0 (coefficient of variation CVy, =
253%). Note that, at such a large degree of variability, the zeroth-order analytical solution
of the mean pressure head deviated slightly from the Monte Carlo results (overestimated in
term of the absolute value of the mean head), while the head variance from our analytical

solution is in good agreement (slightly overestimated) with that of the Monte Carlo results.
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Figure 4 compares Monte Carlo results and analytical solutions for a variability of C'V,, =
30%. The figure indicates that there is a large discrepancy in the head variance between the
two solutions and that the analytical solutions tend to underestimate both the mean head
(in absolute values) and the head variance.

By noticing that the analytical solutions overestimate the contribution of f uncertainty to
the head variance but underestimate that of # uncertainty to the head variance, we suspect
that errors introduced by uncertainties of these two parameters may be partially cancelled
out and more accurate results may be obtained. Figure 5 compares the mean head and head
variance derived from Monte Carlo simulations and the analytical solutions for relatively
large parameter uncertainties: CVy, = 200%, CV, = 30%, and CV, = 20%. It is seen from
the figure that both the mean head and the head variance from the analytical solutions are
reasonably close to Monte Carlo results. This significantly extends the possible range of
applicability of analytical solutions to flow in layered porous media with a relatively large

degree of heterogeneity.
4.3 Uncertain Boundary Flux

To investigate the effect of boundary flux uncertainty on the mean flow field and the head
variance, we conduct several numerical experiments with different magnitudes of the coef-
ficient of variation in ¢, C'V, = 0%, 50%, 100%, and 200%, while the variabilities of the log
hydraulic conductivity f and the log pore-size distribution parameter S remain the same as
in the base case. Because the variation of the infiltration rate does not affect the zeroth-order
mean flow field, we are only concerned with the pressure head variance in our discussion.

Figure 6 illustrates the effect of the variability of ¢ on the head variance. It is seen from
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Figure 6 that after excluding the effect of the variabilities of f and «, the contribution of ¢
variability to the pressure head variance is linearly proportional to the square of C'V,, i.e.,

linearly proportional to o7. This can also be seen from equation (28).
4.4 Uncertain Constant Head Boundary

In most practical problems, it is not easy to precisely specify the pressure head at the lower
boundary of an unsaturated soil column. Or sometimes, we are not able to specify the exact
location of the water table. As a result, a constant head at the lower boundary should be
specified with some uncertainty. We are interested in how this uncertainty will affect our
prediction of the mean head and its associated uncertainty. Figure 7 shows the profile of the
pressure head variance for different magnitudes of uncertainty on the prescribed constant
head at the lower boundary: o4, = 0.0, 0.1, 0.5, 1.0, and 10.0. An important observation
from the figure is that the contribution of the boundary head uncertainty to the pressure
head variance decreases with elevation z and this contribution reduces to zero in the gravity-
dominated region. The implication from this observation is that, once the flow in the upper
portion of a layer reaches the gravity-dominated regime, the uncertainty of the prescribed
head at the bottom of the column will not have any effect on the pressure head uncertainty
in all overlying layers.

Another way to look at the effect of uncertainty in the constant head boundary at the
bottom of the column on the predictive head variance is to specify different values of the head
boundary and to see how the changes to the prescribed head will affect the head uncertainty
in the column. Figure 8 shows profiles of the mean head (Fig. 8a) and the head variance (Fig.

8b) for different values of ¥,. It is seen from the figure that the variation of the constant
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head specified at the bottom boundary does have an effect on the predictions. However,
if the flow in the upper portion of a layer has reached the gravity-dominated regime, the

variation in the constant head value does not have any effect on the overlying layers.
4.5 Relative Contribution of Variabilities in K, «, and ¢

We also conducted three numerical simulations to investigate the relative contribution of
the variability of f, 8, and ¢ to the pressure head variance. In each simulation, we only
allow variation in one of these three parameters with a coefficient of variation CV; = 50.0%,
CV, = 15%, and CV, = 50%, while all other parameters are the same as in the base case.
The results are illustrated in Figure 9, where the dashed curve, dash-dotted curve, and
dotted curve represent the pressure head variance due to the variability of a, K, and g,
respectively. The solid curve in Figure 9 stands for the pressure head variance due to the
variabilities of all three parameters.

It is seen that under the condition of mutually independent K, «, and ¢, the contribution
of the variability in each parameter to the pressure head variance is additive, namely, the
pressure head variance due to the variabilities of all three parameters equals the sum of the
three pressure head variances due to the variability of the individual parameter. In addition,
it seems that the variability in the pore size distribution o has the largest contribution
to the pressure head variance, compared to other parameters with the same magnitude of
coefficients of variation. The finding that unsaturated flow is most sensitive to the variability
in « is consistent with the earlier observations made by Zhang et al. [1998], where only the

effects of f and a were studied.
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5 Summary and Conclusions

In this study, we derived first-order analytical solutions to the mean pressure head and
the head variability as well as the moments of the unsaturated hydraulic conductivity for
one-dimensional steady state unsaturated flow in a layered, randomly heterogeneous soil
column under random boundary conditions (a prescribed constant head at the bottom and
a flux at the top boundary), with the assumption that the constitutive relation between
the unsaturated hydraulic conductivity and the pressure head follows Gardner’s exponential
model. The solutions are not limited to the gravity-dominated flow regime but are valid for
the entire unsaturated zone. One of the advantages of the solutions presented in this study
over the previous ones [Lu and Zhang, 2004] is that the head variance is implicitly expressed
as a function of the input variabilities, i.e, those of the log hydraulic conductivity, the pore-
size distribution parameter, and boundary conditions. The accuracy of these solutions is
verified using Monte Carlo simulations. Numerical examples show that these solutions are
valid for relatively large variabilities in soil properties.

In practice, it is hard to specify precisely the constant pressure head and its associated
uncertainty at the lower boundary. An important observation from this study is that once
the flow reaches a gravity-dominated regime, the actual value of the pressure head and its
variability at the lower boundary do not have any effects on the pressure head statistics in
all overlying layers.

The analytical solution confirms our previous conclusion that the variability of the pore
size distribution parameter a makes more important contribution to the head variability

than the variabilities of the log hydraulic conductivity and the infiltration rate.
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Figure Captions

Figure 1: Comparisons of analytical solutions (dashed curves) and Monte Carlo simulation

results (solid curves) for the base case: (a) mean pressure head, and (b) head variance.

Figure 2: Comparisons of analytical solutions and Monte Carlo simulation results: (a)
mean unsaturated hydraulic conductivity and (b) variance of unsaturated hydraulic

conductivity for the base case.

Figure 3: Comparison of (a) mean pressure head and (b) head variance derived from
analytical solutions and Monte Carlo simulation results for the case with a larger

variability of K, CVk, = 253% (0} = 2.0).

Figure 4: Comparison of (a) mean pressure head and (b) head variance derived from
analytical solutions and Monte Carlo simulation results for the case with a larger

variability of o, CV,, = 30%.

Figure 5: Comparison of (a) mean pressure head and (b) head variance derived from
analytical solutions and Monte Carlo simulation results for the case larger variabilities

CVi, = 253%, CV, = 30%, CV, = 30%.

Figure 6: The effect of the variability of the infiltration rate ¢ on the pressure head

variance.

Figure 7: The effect of the uncertainty of the specified constant head at the lower boundary

on the pressure head variance.
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Figure 8: The effect of various values of the specified constant head at the lower boundary

on the pressure head variance.

Figure 9: Relative contribution of input variabilities on the pressure head variance.

27



@ (b)

20— 20
\
SN~ - ANA
15} MC | 15 1

E E
5 5
£ 10} ‘r 1810 1
8 w k5
L | L

5¢ \ ] 5 ]

0—30o 30 20 10 00 800 0.10 0.20 . 030 0.40

Mean Pressure Head [(m) Pressure Head Variance a;, (m")
Figure 1:

28



Elevation (m)

Elevation (m)

a b
20 @ — 20 (5)
\
S ANA
15+ T MC 15 1
| E
. 5
10+ ‘r 18 10 |
| 8
| L
50 \ | 5 |
%o 20 30 20 10 00 800 0.20 0.0 _ 0.60
Mean Pressure Head [(m) Pressure Head Variance a;, (m")
Figure 3:
a b
20 @ — 20 C) _
\\
R ——— ANA
15} ‘ MC | 15 1
: e
) 5
10} ‘ 12 10 1
| 8
| L
5t ‘ : 5 :
%o 20 30 20 10 00 800 020 040 060 080 100 120 140
Mean Pressure Head [J(m) Pressure Head Variance g, (m")
Figure 4:

29



Elevation (m)

2.00

a b
20 @ : 20 C)
\
B ANA
15+ T MC 15 1
E
f c
L =7 ]l © i
10 S 10
@
w
5¢ | ] 5 ]
%o 40 30 20 1.0 00 Boo 0.50 .00 150
Mean Pressure Head yC(m) Pressure Head Variance o7, (m’)
Figure 5:

q
q

o= 100%
CV,=200% |

1 1
1.0 1.5
Head Variance o, (m°)

Figure 6:

30

2.0 25



20

15

O A 05, , 075 1
Head Variance a, (m?)
b
20 @ ) .
7 | T l.IJa: -2.0m |
| R Lpa= -1.0m
| 7 L1”3\:0.0”,' |
i \E/ 10+ |
N
i
5 | | |
- - ‘/‘
(-l T
oy ‘
-5 0 .1 02 -— 5 ]
Head Variance a, (m?)
Figure 8:

31



0.6

- T
77777 CV, = 50%
. D cV,=15%
L I CV, =50%
1 ! total
1 \
2k 2. ‘ 4
{
i |
i
./ -
L 1 L 1 L
0.0 0.2 ) o 0.4
g, (m)

Figure 9:

32



